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Introduction
 A self-healing system “…automatically 

detects, diagnoses and repairs localized 
software and hardware problems” – The Vision of 
Autonomic Computing 2003 IEEE Computer Society



  

Challenges
 How do we evaluate our progress towards 

realizing self-healing systems?
 How do we quantify the impact of the problems 

these systems should resolve?  (Baseline)
 How do we reason about expected benefits for 

systems currently lacking self-healing 
mechanisms?

 How do we quantify the efficacy of individual and 
combined self-healing mechanisms and reason 
about tradeoffs?

 How do we identify sub-optimal mechanisms?



  

Problem
 Evaluating self-healing systems and their 

mechanisms is non-trivial
 Studying the failure behavior of systems can be 

difficult
 Finding fault-injection tools that exercise the 

remediation mechanisms available is difficult
 Multiple styles of healing to consider (reactive, 

preventative, proactive)
 Accounting for imperfect repair scenarios
 Partially automated repairs are possible



  

Hypotheses
 Reliability, Availability and Serviceability 

provide reasonable evaluation metrics
 Combining practical fault-injection tools with 

mathematical modeling techniques provides 
the foundation for a feasible and flexible 
methodology for evaluating and comparing 
the reliability, availability and serviceability 
(RAS) characteristics of computing systems



  

Objective
 To inject faults into the components a multi-

component n-tier web application
 Specifically the application server and Operating 

System components
 Observe its responses and the responses of 

any remediation mechanisms available
 Model and evaluate available mechanisms
 Identify weaknesses



  

Experiment Setup

Target: 3-Tier Web Application

TPC-W Web-application
Resin 3.0.22 Web-server and (Java) Application Server
Sun Hotspot JVM v1.5
MySQL 5.0.27
Linux 2.4.18

Remote Browser Emulation clients to simulate user loads



  

Practical Fault-Injection Tools
 Kheiron/JVM (ICAC 2006)

 Uses bytecode rewriting to inject faults into 
running Java applications

 Faults include: memory leaks, hangs, delays etc.
 Two other versions of Kheiron exist (CLR & C)

 Nooks Device-Driver Fault-Injection Tools
 Uses the kernel module interface on Linux (2.4 

and now 2.6) to inject device driver faults
 Faults include: text faults, stack faults, hangs etc.



  

Healing Mechanisms Available
 Application Server

 Automatic restarts
 Operating System

 Nooks device driver protection framework
 Manual system reboot



  

Mathematical Modeling Techniques
 Continuous Time Markov Chains (CTMCs)

 Limiting/steady-state availability
 Yearly downtime
 Repair success rates (fault-coverage)
 Repair times

 Markov Reward Networks
 Downtime costs (time, money, #service visits etc.)
 SLA penalty-avoidance



  

Resin Memory-Leak Handler Analysis
 Analyzing perfect recovery e.g. 

mechanisms addressing resource 
leaks/fatal crashes
 S0 – UP state, system working
 S1 – DOWN state, system 

restarting
 λfailure = 1 every 8 hours
 µrestart = 47 seconds

 Attaching a value to each state 
allows us to evaluate the cost/time 
impact associated with these failures.

Results:
Steady state 
availability: 99.838%
Downtime per year: 
866 minutes



  

Linux w/Nooks Recovery Analysis
 Analyzing imperfect recovery e.g. device 

driver recovery using Nooks
 S0 – UP state, system working
 S1 – UP state, recovering failed driver
 S2 – DOWN state, system reboot
 λdriver_failure = 4 faults every 8 hrs
 µnooks_recovery = 4,093 mu seconds
 µreboot = 82 seconds
 c – coverage factor/success rate



  

Resin + Linux + Nooks Analysis
 Composing Markov chains

 S0 – UP state, system working
 S1 – UP state, recovering failed 

driver
 S2 – DOWN state, system reboot
 S3 – DOWN state, Resin reboot
 λdriver_failure = 4 faults every 8 hrs
 µnooks_recovery = 4,093 mu seconds
 µreboot = 82 seconds
 c – coverage factor
 λmemory_leak_ = 1 every 8 hours
 µrestart_resin = 47 seconds

Max availability = 99.835%
Min downtime = 866 minutes



  

Benefits of CTMCs + Fault Injection
 Able to model and analyze different styles of self-

healing mechanisms
 Quantifies the impact of mechanism details 

(success rates, recovery times etc.) on the system’s 
operational constraints (availability, production 
targets, production-delay reduction etc.)
 Engineering view AND Business view

 Able to identify under-performing mechanisms
 Useful at design time as well as post-production
 Able to control the fault-rates



  

Caveats of CTMCs + Fault-Injection
 CTMCs may not always be the “right” tool

 Constant hazard-rate assumption
 May under or overstate the effects/impacts
 True distribution of faults may be different

 Fault-independence assumptions
 Limited to analyzing near-coincident faults
 Not suitable for analyzing cascading faults (can we 

model the precipitating event as an approximation?)
 Some failures are harder to replicate/induce than 

others
 Better data on faults could improve fault-injection tools

 Getting detailed breakdown of types/rates of failures
 More data should improve the fault-injection experiments 

and relevance of the results



  

Real-World Downtime Data*
 Mean incidents of unplanned downtime in a 

year: 14.85 (n-tier web applications)
 Mean cost of unplanned downtime (Lost 

productivity #IT Hours): 
 2115 hrs (52.88 40-hour work-weeks)

 Mean cost of unplanned downtime (Lost 
productivity #Non-IT Hours): 
 515.7 hrs** (12.89 40-hour work-weeks)

* “IT Ops Research Report: Downtime and Other Top Concerns,” 
StackSafe. July 2007. (Web survey of 400 IT professional panelists, US Only)
** "Revive Systems Buyer Behavior Research," Research Edge, Inc. June 2007 



  

Quick Analysis – End User View
 Unplanned Downtime (Lost productivity Non-IT 

hrs) per year: 515.7 hrs (30,942 minutes).
 Is this good? (94.11% Availability)

 Less than two 9’s of availability
 Decreasing the down time by an order of magnitude 

could improve system availability by two orders of 
magnitude



  

Proposed Data-Driven Evaluation (7U)
 1. Gather failure data and specify fault-model
 2. Establish fault-remediation relationship
 3. Select/create fault-injection tools to mimic faults in 1
 4. Identify Macro-measurements

 Identify environmental constraints governing system-
operation (availability, production targets etc.)

 5. Identify Micro-measurements
 Identify metrics related to specifics of self-healing 

mechanisms (success rates, recovery time, fault-coverage)
 6. Run fault-injection experiments and record 

observed behavior
 7. Construct pre-experiment and post-experiment 

models



  

The 7U-Evaluation Method



  

Conclusions
 Dynamic instrumentation and fault-injection lets us 

transparently collect data “in-situ” and replicate 
problems “in-vivo”

 The CTMC-models are flexible enough to 
quantitatively analyze various styles and “impacts” 
of repairs

 We can use them at design-time or post-
deployment time

 The math is the “easy” part compared to getting 
customer data on failures, outages, and their 
impacts.
 These details are critical to defining the notions of “better” 

and “good” for these systems



  

Future Work
 More experiments on an expanded set of operating 

systems using more server-applications
 Linux 2.6
 OpenSolaris 10
 Windows XP SP2/Windows 2003 Server

 Modeling and analyzing other self-healing 
mechanisms
 Error Virtualization (From STEM to SEAD, Locasto et. al 

Usenix 2007)
 Self-Healing in OpenSolaris 10

 Feedback control for policy-driven repair-
mechanism selection



  

Questions, Comments, Queries?

Thank you for your time and attention

For more information contact:
Rean Griffith

rg2023@cs.columbia.edu


