

The Role of RAS-Models in the Design
and Evaluation of Self-Healing Systems

Rean Griffith, Ritika Virmani, Gail Kaiser
Programming Systems Lab (PSL)

Columbia University

SOAS 2007 Leipzig, Germany
September 26th 2007

Presented by Rean Griffith
rg2023@cs.columbia.edu

Overview

 Introduction
 Challenges
 Problem
 Hypothesis
 Experiments
 Conclusion & Future Work

Introduction
 A self-healing system “…automatically

detects, diagnoses and repairs localized
software and hardware problems” – The Vision of
Autonomic Computing 2003 IEEE Computer Society

Challenges
 How do we evaluate our progress towards

realizing self-healing systems?
 How do we quantify the impact of the problems

these systems should resolve? (Baseline)
 How do we reason about expected benefits for

systems currently lacking self-healing
mechanisms?

 How do we quantify the efficacy of individual and
combined self-healing mechanisms and reason
about tradeoffs?

 How do we identify sub-optimal mechanisms?

Problem
 Evaluating self-healing systems and their

mechanisms is non-trivial
 Studying the failure behavior of systems can be

difficult
 Finding fault-injection tools that exercise the

remediation mechanisms available is difficult
 Multiple styles of healing to consider (reactive,

preventative, proactive)
 Accounting for imperfect repair scenarios
 Partially automated repairs are possible

Hypotheses
 Reliability, Availability and Serviceability

provide reasonable evaluation metrics
 Combining practical fault-injection tools with

mathematical modeling techniques provides
the foundation for a feasible and flexible
methodology for evaluating and comparing
the reliability, availability and serviceability
(RAS) characteristics of computing systems

Objective
 To inject faults into the components a multi-

component n-tier web application
 Specifically the application server and Operating

System components
 Observe its responses and the responses of

any remediation mechanisms available
 Model and evaluate available mechanisms
 Identify weaknesses

Experiment Setup

Target: 3-Tier Web Application

TPC-W Web-application
Resin 3.0.22 Web-server and (Java) Application Server
Sun Hotspot JVM v1.5
MySQL 5.0.27
Linux 2.4.18

Remote Browser Emulation clients to simulate user loads

Practical Fault-Injection Tools
 Kheiron/JVM (ICAC 2006)

 Uses bytecode rewriting to inject faults into
running Java applications

 Faults include: memory leaks, hangs, delays etc.
 Two other versions of Kheiron exist (CLR & C)

 Nooks Device-Driver Fault-Injection Tools
 Uses the kernel module interface on Linux (2.4

and now 2.6) to inject device driver faults
 Faults include: text faults, stack faults, hangs etc.

Healing Mechanisms Available
 Application Server

 Automatic restarts
 Operating System

 Nooks device driver protection framework
 Manual system reboot

Mathematical Modeling Techniques
 Continuous Time Markov Chains (CTMCs)

 Limiting/steady-state availability
 Yearly downtime
 Repair success rates (fault-coverage)
 Repair times

 Markov Reward Networks
 Downtime costs (time, money, #service visits etc.)
 SLA penalty-avoidance

Resin Memory-Leak Handler Analysis
 Analyzing perfect recovery e.g.

mechanisms addressing resource
leaks/fatal crashes
 S0 – UP state, system working
 S1 – DOWN state, system

restarting
 λfailure = 1 every 8 hours
 µrestart = 47 seconds

 Attaching a value to each state
allows us to evaluate the cost/time
impact associated with these failures.

Results:
Steady state
availability: 99.838%
Downtime per year:
866 minutes

Linux w/Nooks Recovery Analysis
 Analyzing imperfect recovery e.g. device

driver recovery using Nooks
 S0 – UP state, system working
 S1 – UP state, recovering failed driver
 S2 – DOWN state, system reboot
 λdriver_failure = 4 faults every 8 hrs
 µnooks_recovery = 4,093 mu seconds
 µreboot = 82 seconds
 c – coverage factor/success rate

Resin + Linux + Nooks Analysis
 Composing Markov chains

 S0 – UP state, system working
 S1 – UP state, recovering failed

driver
 S2 – DOWN state, system reboot
 S3 – DOWN state, Resin reboot
 λdriver_failure = 4 faults every 8 hrs
 µnooks_recovery = 4,093 mu seconds
 µreboot = 82 seconds
 c – coverage factor
 λmemory_leak_ = 1 every 8 hours
 µrestart_resin = 47 seconds

Max availability = 99.835%
Min downtime = 866 minutes

Benefits of CTMCs + Fault Injection
 Able to model and analyze different styles of self-

healing mechanisms
 Quantifies the impact of mechanism details

(success rates, recovery times etc.) on the system’s
operational constraints (availability, production
targets, production-delay reduction etc.)
 Engineering view AND Business view

 Able to identify under-performing mechanisms
 Useful at design time as well as post-production
 Able to control the fault-rates

Caveats of CTMCs + Fault-Injection
 CTMCs may not always be the “right” tool

 Constant hazard-rate assumption
 May under or overstate the effects/impacts
 True distribution of faults may be different

 Fault-independence assumptions
 Limited to analyzing near-coincident faults
 Not suitable for analyzing cascading faults (can we

model the precipitating event as an approximation?)
 Some failures are harder to replicate/induce than

others
 Better data on faults could improve fault-injection tools

 Getting detailed breakdown of types/rates of failures
 More data should improve the fault-injection experiments

and relevance of the results

Real-World Downtime Data*
 Mean incidents of unplanned downtime in a

year: 14.85 (n-tier web applications)
 Mean cost of unplanned downtime (Lost

productivity #IT Hours):
 2115 hrs (52.88 40-hour work-weeks)

 Mean cost of unplanned downtime (Lost
productivity #Non-IT Hours):
 515.7 hrs** (12.89 40-hour work-weeks)

* “IT Ops Research Report: Downtime and Other Top Concerns,”
StackSafe. July 2007. (Web survey of 400 IT professional panelists, US Only)
** "Revive Systems Buyer Behavior Research," Research Edge, Inc. June 2007

Quick Analysis – End User View
 Unplanned Downtime (Lost productivity Non-IT

hrs) per year: 515.7 hrs (30,942 minutes).
 Is this good? (94.11% Availability)

 Less than two 9’s of availability
 Decreasing the down time by an order of magnitude

could improve system availability by two orders of
magnitude

Proposed Data-Driven Evaluation (7U)
 1. Gather failure data and specify fault-model
 2. Establish fault-remediation relationship
 3. Select/create fault-injection tools to mimic faults in 1
 4. Identify Macro-measurements

 Identify environmental constraints governing system-
operation (availability, production targets etc.)

 5. Identify Micro-measurements
 Identify metrics related to specifics of self-healing

mechanisms (success rates, recovery time, fault-coverage)
 6. Run fault-injection experiments and record

observed behavior
 7. Construct pre-experiment and post-experiment

models

The 7U-Evaluation Method

Conclusions
 Dynamic instrumentation and fault-injection lets us

transparently collect data “in-situ” and replicate
problems “in-vivo”

 The CTMC-models are flexible enough to
quantitatively analyze various styles and “impacts”
of repairs

 We can use them at design-time or post-
deployment time

 The math is the “easy” part compared to getting
customer data on failures, outages, and their
impacts.
 These details are critical to defining the notions of “better”

and “good” for these systems

Future Work
 More experiments on an expanded set of operating

systems using more server-applications
 Linux 2.6
 OpenSolaris 10
 Windows XP SP2/Windows 2003 Server

 Modeling and analyzing other self-healing
mechanisms
 Error Virtualization (From STEM to SEAD, Locasto et. al

Usenix 2007)
 Self-Healing in OpenSolaris 10

 Feedback control for policy-driven repair-
mechanism selection

Questions, Comments, Queries?

Thank you for your time and attention

For more information contact:
Rean Griffith

rg2023@cs.columbia.edu

