

The Role of RAS-Models in the Design
and Evaluation of Self-Healing Systems

Rean Griffith, Ritika Virmani, Gail Kaiser
Programming Systems Lab (PSL)

Columbia University

SOAS 2007 Leipzig, Germany
September 26th 2007

Presented by Rean Griffith
rg2023@cs.columbia.edu

Overview

 Introduction
 Challenges
 Problem
 Hypothesis
 Experiments
 Conclusion & Future Work

Introduction
 A self-healing system “…automatically

detects, diagnoses and repairs localized
software and hardware problems” – The Vision of
Autonomic Computing 2003 IEEE Computer Society

Challenges
 How do we evaluate our progress towards

realizing self-healing systems?
 How do we quantify the impact of the problems

these systems should resolve? (Baseline)
 How do we reason about expected benefits for

systems currently lacking self-healing
mechanisms?

 How do we quantify the efficacy of individual and
combined self-healing mechanisms and reason
about tradeoffs?

 How do we identify sub-optimal mechanisms?

Problem
 Evaluating self-healing systems and their

mechanisms is non-trivial
 Studying the failure behavior of systems can be

difficult
 Finding fault-injection tools that exercise the

remediation mechanisms available is difficult
 Multiple styles of healing to consider (reactive,

preventative, proactive)
 Accounting for imperfect repair scenarios
 Partially automated repairs are possible

Hypotheses
 Reliability, Availability and Serviceability

provide reasonable evaluation metrics
 Combining practical fault-injection tools with

mathematical modeling techniques provides
the foundation for a feasible and flexible
methodology for evaluating and comparing
the reliability, availability and serviceability
(RAS) characteristics of computing systems

Objective
 To inject faults into the components a multi-

component n-tier web application
 Specifically the application server and Operating

System components
 Observe its responses and the responses of

any remediation mechanisms available
 Model and evaluate available mechanisms
 Identify weaknesses

Experiment Setup

Target: 3-Tier Web Application

TPC-W Web-application
Resin 3.0.22 Web-server and (Java) Application Server
Sun Hotspot JVM v1.5
MySQL 5.0.27
Linux 2.4.18

Remote Browser Emulation clients to simulate user loads

Practical Fault-Injection Tools
 Kheiron/JVM (ICAC 2006)

 Uses bytecode rewriting to inject faults into
running Java applications

 Faults include: memory leaks, hangs, delays etc.
 Two other versions of Kheiron exist (CLR & C)

 Nooks Device-Driver Fault-Injection Tools
 Uses the kernel module interface on Linux (2.4

and now 2.6) to inject device driver faults
 Faults include: text faults, stack faults, hangs etc.

Healing Mechanisms Available
 Application Server

 Automatic restarts
 Operating System

 Nooks device driver protection framework
 Manual system reboot

Mathematical Modeling Techniques
 Continuous Time Markov Chains (CTMCs)

 Limiting/steady-state availability
 Yearly downtime
 Repair success rates (fault-coverage)
 Repair times

 Markov Reward Networks
 Downtime costs (time, money, #service visits etc.)
 SLA penalty-avoidance

Resin Memory-Leak Handler Analysis
 Analyzing perfect recovery e.g.

mechanisms addressing resource
leaks/fatal crashes
 S0 – UP state, system working
 S1 – DOWN state, system

restarting
 λfailure = 1 every 8 hours
 µrestart = 47 seconds

 Attaching a value to each state
allows us to evaluate the cost/time
impact associated with these failures.

Results:
Steady state
availability: 99.838%
Downtime per year:
866 minutes

Linux w/Nooks Recovery Analysis
 Analyzing imperfect recovery e.g. device

driver recovery using Nooks
 S0 – UP state, system working
 S1 – UP state, recovering failed driver
 S2 – DOWN state, system reboot
 λdriver_failure = 4 faults every 8 hrs
 µnooks_recovery = 4,093 mu seconds
 µreboot = 82 seconds
 c – coverage factor/success rate

Resin + Linux + Nooks Analysis
 Composing Markov chains

 S0 – UP state, system working
 S1 – UP state, recovering failed

driver
 S2 – DOWN state, system reboot
 S3 – DOWN state, Resin reboot
 λdriver_failure = 4 faults every 8 hrs
 µnooks_recovery = 4,093 mu seconds
 µreboot = 82 seconds
 c – coverage factor
 λmemory_leak_ = 1 every 8 hours
 µrestart_resin = 47 seconds

Max availability = 99.835%
Min downtime = 866 minutes

Benefits of CTMCs + Fault Injection
 Able to model and analyze different styles of self-

healing mechanisms
 Quantifies the impact of mechanism details

(success rates, recovery times etc.) on the system’s
operational constraints (availability, production
targets, production-delay reduction etc.)
 Engineering view AND Business view

 Able to identify under-performing mechanisms
 Useful at design time as well as post-production
 Able to control the fault-rates

Caveats of CTMCs + Fault-Injection
 CTMCs may not always be the “right” tool

 Constant hazard-rate assumption
 May under or overstate the effects/impacts
 True distribution of faults may be different

 Fault-independence assumptions
 Limited to analyzing near-coincident faults
 Not suitable for analyzing cascading faults (can we

model the precipitating event as an approximation?)
 Some failures are harder to replicate/induce than

others
 Better data on faults could improve fault-injection tools

 Getting detailed breakdown of types/rates of failures
 More data should improve the fault-injection experiments

and relevance of the results

Real-World Downtime Data*
 Mean incidents of unplanned downtime in a

year: 14.85 (n-tier web applications)
 Mean cost of unplanned downtime (Lost

productivity #IT Hours):
 2115 hrs (52.88 40-hour work-weeks)

 Mean cost of unplanned downtime (Lost
productivity #Non-IT Hours):
 515.7 hrs** (12.89 40-hour work-weeks)

* “IT Ops Research Report: Downtime and Other Top Concerns,”
StackSafe. July 2007. (Web survey of 400 IT professional panelists, US Only)
** "Revive Systems Buyer Behavior Research," Research Edge, Inc. June 2007

Quick Analysis – End User View
 Unplanned Downtime (Lost productivity Non-IT

hrs) per year: 515.7 hrs (30,942 minutes).
 Is this good? (94.11% Availability)

 Less than two 9’s of availability
 Decreasing the down time by an order of magnitude

could improve system availability by two orders of
magnitude

Proposed Data-Driven Evaluation (7U)
 1. Gather failure data and specify fault-model
 2. Establish fault-remediation relationship
 3. Select/create fault-injection tools to mimic faults in 1
 4. Identify Macro-measurements

 Identify environmental constraints governing system-
operation (availability, production targets etc.)

 5. Identify Micro-measurements
 Identify metrics related to specifics of self-healing

mechanisms (success rates, recovery time, fault-coverage)
 6. Run fault-injection experiments and record

observed behavior
 7. Construct pre-experiment and post-experiment

models

The 7U-Evaluation Method

Conclusions
 Dynamic instrumentation and fault-injection lets us

transparently collect data “in-situ” and replicate
problems “in-vivo”

 The CTMC-models are flexible enough to
quantitatively analyze various styles and “impacts”
of repairs

 We can use them at design-time or post-
deployment time

 The math is the “easy” part compared to getting
customer data on failures, outages, and their
impacts.
 These details are critical to defining the notions of “better”

and “good” for these systems

Future Work
 More experiments on an expanded set of operating

systems using more server-applications
 Linux 2.6
 OpenSolaris 10
 Windows XP SP2/Windows 2003 Server

 Modeling and analyzing other self-healing
mechanisms
 Error Virtualization (From STEM to SEAD, Locasto et. al

Usenix 2007)
 Self-Healing in OpenSolaris 10

 Feedback control for policy-driven repair-
mechanism selection

Questions, Comments, Queries?

Thank you for your time and attention

For more information contact:
Rean Griffith

rg2023@cs.columbia.edu

