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Introduction
 A self-healing system “…automatically 

detects, diagnoses and repairs localized 
software and hardware problems” – The Vision of 
Autonomic Computing 2003 IEEE Computer Society



  

Challenges
 How do we evaluate our progress towards 

realizing self-healing systems?
 How do we quantify the impact of the problems 

these systems should resolve?  (Baseline)
 How do we reason about expected benefits for 

systems currently lacking self-healing 
mechanisms?

 How do we quantify the efficacy of individual and 
combined self-healing mechanisms and reason 
about tradeoffs?

 How do we identify sub-optimal mechanisms?



  

Problem
 Evaluating self-healing systems and their 

mechanisms is non-trivial
 Studying the failure behavior of systems can be 

difficult
 Finding fault-injection tools that exercise the 

remediation mechanisms available is difficult
 Multiple styles of healing to consider (reactive, 

preventative, proactive)
 Accounting for imperfect repair scenarios
 Partially automated repairs are possible



  

Hypotheses
 Reliability, Availability and Serviceability 

provide reasonable evaluation metrics
 Combining practical fault-injection tools with 

mathematical modeling techniques provides 
the foundation for a feasible and flexible 
methodology for evaluating and comparing 
the reliability, availability and serviceability 
(RAS) characteristics of computing systems



  

Objective
 To inject faults into the components a multi-

component n-tier web application
 Specifically the application server and Operating 

System components
 Observe its responses and the responses of 

any remediation mechanisms available
 Model and evaluate available mechanisms
 Identify weaknesses



  

Experiment Setup

Target: 3-Tier Web Application

TPC-W Web-application
Resin 3.0.22 Web-server and (Java) Application Server
Sun Hotspot JVM v1.5
MySQL 5.0.27
Linux 2.4.18

Remote Browser Emulation clients to simulate user loads



  

Practical Fault-Injection Tools
 Kheiron/JVM (ICAC 2006)

 Uses bytecode rewriting to inject faults into 
running Java applications

 Faults include: memory leaks, hangs, delays etc.
 Two other versions of Kheiron exist (CLR & C)

 Nooks Device-Driver Fault-Injection Tools
 Uses the kernel module interface on Linux (2.4 

and now 2.6) to inject device driver faults
 Faults include: text faults, stack faults, hangs etc.



  

Healing Mechanisms Available
 Application Server

 Automatic restarts
 Operating System

 Nooks device driver protection framework
 Manual system reboot



  

Mathematical Modeling Techniques
 Continuous Time Markov Chains (CTMCs)

 Limiting/steady-state availability
 Yearly downtime
 Repair success rates (fault-coverage)
 Repair times

 Markov Reward Networks
 Downtime costs (time, money, #service visits etc.)
 SLA penalty-avoidance



  

Resin Memory-Leak Handler Analysis
 Analyzing perfect recovery e.g. 

mechanisms addressing resource 
leaks/fatal crashes
 S0 – UP state, system working
 S1 – DOWN state, system 

restarting
 λfailure = 1 every 8 hours
 µrestart = 47 seconds

 Attaching a value to each state 
allows us to evaluate the cost/time 
impact associated with these failures.

Results:
Steady state 
availability: 99.838%
Downtime per year: 
866 minutes



  

Linux w/Nooks Recovery Analysis
 Analyzing imperfect recovery e.g. device 

driver recovery using Nooks
 S0 – UP state, system working
 S1 – UP state, recovering failed driver
 S2 – DOWN state, system reboot
 λdriver_failure = 4 faults every 8 hrs
 µnooks_recovery = 4,093 mu seconds
 µreboot = 82 seconds
 c – coverage factor/success rate



  

Resin + Linux + Nooks Analysis
 Composing Markov chains

 S0 – UP state, system working
 S1 – UP state, recovering failed 

driver
 S2 – DOWN state, system reboot
 S3 – DOWN state, Resin reboot
 λdriver_failure = 4 faults every 8 hrs
 µnooks_recovery = 4,093 mu seconds
 µreboot = 82 seconds
 c – coverage factor
 λmemory_leak_ = 1 every 8 hours
 µrestart_resin = 47 seconds

Max availability = 99.835%
Min downtime = 866 minutes



  

Benefits of CTMCs + Fault Injection
 Able to model and analyze different styles of self-

healing mechanisms
 Quantifies the impact of mechanism details 

(success rates, recovery times etc.) on the system’s 
operational constraints (availability, production 
targets, production-delay reduction etc.)
 Engineering view AND Business view

 Able to identify under-performing mechanisms
 Useful at design time as well as post-production
 Able to control the fault-rates



  

Caveats of CTMCs + Fault-Injection
 CTMCs may not always be the “right” tool

 Constant hazard-rate assumption
 May under or overstate the effects/impacts
 True distribution of faults may be different

 Fault-independence assumptions
 Limited to analyzing near-coincident faults
 Not suitable for analyzing cascading faults (can we 

model the precipitating event as an approximation?)
 Some failures are harder to replicate/induce than 

others
 Better data on faults could improve fault-injection tools

 Getting detailed breakdown of types/rates of failures
 More data should improve the fault-injection experiments 

and relevance of the results



  

Real-World Downtime Data*
 Mean incidents of unplanned downtime in a 

year: 14.85 (n-tier web applications)
 Mean cost of unplanned downtime (Lost 

productivity #IT Hours): 
 2115 hrs (52.88 40-hour work-weeks)

 Mean cost of unplanned downtime (Lost 
productivity #Non-IT Hours): 
 515.7 hrs** (12.89 40-hour work-weeks)

* “IT Ops Research Report: Downtime and Other Top Concerns,” 
StackSafe. July 2007. (Web survey of 400 IT professional panelists, US Only)
** "Revive Systems Buyer Behavior Research," Research Edge, Inc. June 2007 



  

Quick Analysis – End User View
 Unplanned Downtime (Lost productivity Non-IT 

hrs) per year: 515.7 hrs (30,942 minutes).
 Is this good? (94.11% Availability)

 Less than two 9’s of availability
 Decreasing the down time by an order of magnitude 

could improve system availability by two orders of 
magnitude



  

Proposed Data-Driven Evaluation (7U)
 1. Gather failure data and specify fault-model
 2. Establish fault-remediation relationship
 3. Select/create fault-injection tools to mimic faults in 1
 4. Identify Macro-measurements

 Identify environmental constraints governing system-
operation (availability, production targets etc.)

 5. Identify Micro-measurements
 Identify metrics related to specifics of self-healing 

mechanisms (success rates, recovery time, fault-coverage)
 6. Run fault-injection experiments and record 

observed behavior
 7. Construct pre-experiment and post-experiment 

models



  

The 7U-Evaluation Method



  

Conclusions
 Dynamic instrumentation and fault-injection lets us 

transparently collect data “in-situ” and replicate 
problems “in-vivo”

 The CTMC-models are flexible enough to 
quantitatively analyze various styles and “impacts” 
of repairs

 We can use them at design-time or post-
deployment time

 The math is the “easy” part compared to getting 
customer data on failures, outages, and their 
impacts.
 These details are critical to defining the notions of “better” 

and “good” for these systems



  

Future Work
 More experiments on an expanded set of operating 

systems using more server-applications
 Linux 2.6
 OpenSolaris 10
 Windows XP SP2/Windows 2003 Server

 Modeling and analyzing other self-healing 
mechanisms
 Error Virtualization (From STEM to SEAD, Locasto et. al 

Usenix 2007)
 Self-Healing in OpenSolaris 10

 Feedback control for policy-driven repair-
mechanism selection



  

Questions, Comments, Queries?

Thank you for your time and attention

For more information contact:
Rean Griffith

rg2023@cs.columbia.edu


